Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria

Identifieur interne : 000819 ( Chine/Analysis ); précédent : 000818; suivant : 000820

In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria

Auteurs : RBID : Pascal:11-0094955

Descripteurs français

English descriptors

Abstract

A bactericidal technique (PEC-Br) utilizing in situ photoelectrocatalytically generated photoholes (h+), long-lived di-bromide radical anions (Br========dot;-2) and active oxygen species (AOS) for instant inactivation and rapid decomposition of Gram-negative bacteria such as Escherichia coli (E. coli) was proposed and experimentally validated. The method is capable of inactivating 99.90% and 100% of 9 x 106 CFU/mL E. coli within 0.40 s and 1.57 s, respectively. To achieve the same inactivation effect, the proposed method is 358 and 199 times faster than that of the photoelectrocatalytic method in the absence of Br-, and 2250 and 764 times faster than that of the photocatalytic method in the absence of Br-. The decomposition experimental results obtained from 600-s PEC-Br-treated samples demonstrated that over 90% of E. coli body mass was decomposed and 42% biological carbon contents in the sample was completely mineralized and converted into CO2. The mechanistic pathways of disinfection/decomposition by photocatalysis (PC), photoelectrocatalysis (PEC), and photoelectrocatalysis in presence of Br- (PEC-Br) were also illustrated based on experimental evidence.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0094955

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria</title>
<author>
<name>GUIYING LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Queensland 4222</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAOLU LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Queensland 4222</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAIMIN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Queensland 4222</wicri:noRegion>
</affiliation>
</author>
<author>
<name>TAICHENG AN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Queensland 4222</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHANQING ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Queensland 4222</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carroll, Anthony R" uniqKey="Carroll A">Anthony R. Carroll</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Queensland 4222</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HUIJUN ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Queensland 4222</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0094955</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0094955 INIST</idno>
<idno type="RBID">Pascal:11-0094955</idno>
<idno type="wicri:Area/Main/Corpus">003638</idno>
<idno type="wicri:Area/Main/Repository">002C56</idno>
<idno type="wicri:Area/Chine/Extraction">000819</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-9517</idno>
<title level="j" type="abbreviated">J. catal. : (Print)</title>
<title level="j" type="main">Journal of catalysis : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bactericidal effect</term>
<term>Binary compound</term>
<term>Bromides</term>
<term>Carbon content</term>
<term>Decomposition</term>
<term>Escherichia coli</term>
<term>Gram negative bacteria</term>
<term>Heterogeneous catalysis</term>
<term>In situ</term>
<term>Indium Oxides</term>
<term>Mechanism</term>
<term>Oxygen</term>
<term>Photocatalysis</term>
<term>Radical anion</term>
<term>Ternary compound</term>
<term>Titanium Oxides</term>
<term>Titanium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>In situ</term>
<term>Décomposition</term>
<term>Bromure</term>
<term>Mécanisme</term>
<term>Catalyse hétérogène</term>
<term>Radical libre anionique</term>
<term>Oxygène</term>
<term>Photocatalyse</term>
<term>Teneur carbone</term>
<term>Escherichia coli</term>
<term>Bactérie Gram négatif</term>
<term>Bactéricidie</term>
<term>Oxyde de titane</term>
<term>Indium Oxyde</term>
<term>Titane Oxyde</term>
<term>Composé binaire</term>
<term>Composé ternaire</term>
<term>Photoélectrocatalyse</term>
<term>TiO2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A bactericidal technique (PEC-Br) utilizing in situ photoelectrocatalytically generated photoholes (h
<sup>+</sup>
), long-lived di-bromide radical anions (Br========dot;
<sup>-</sup>
<sub>2</sub>
) and active oxygen species (AOS) for instant inactivation and rapid decomposition of Gram-negative bacteria such as Escherichia coli (E. coli) was proposed and experimentally validated. The method is capable of inactivating 99.90% and 100% of 9 x 10
<sup>6</sup>
CFU/mL E. coli within 0.40 s and 1.57 s, respectively. To achieve the same inactivation effect, the proposed method is 358 and 199 times faster than that of the photoelectrocatalytic method in the absence of Br
<sup>-</sup>
, and 2250 and 764 times faster than that of the photocatalytic method in the absence of Br
<sup>-</sup>
. The decomposition experimental results obtained from 600-s PEC-Br-treated samples demonstrated that over 90% of E. coli body mass was decomposed and 42% biological carbon contents in the sample was completely mineralized and converted into CO
<sub>2</sub>
. The mechanistic pathways of disinfection/decomposition by photocatalysis (PC), photoelectrocatalysis (PEC), and photoelectrocatalysis in presence of Br
<sup>-</sup>
(PEC-Br) were also illustrated based on experimental evidence.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-9517</s0>
</fA01>
<fA02 i1="01">
<s0>JCTLA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. catal. : (Print)</s0>
</fA03>
<fA05>
<s2>277</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUIYING LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIAOLU LIU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HAIMIN ZHANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TAICHENG AN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHANQING ZHANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CARROLL (Anthony R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HUIJUN ZHAO</s1>
</fA11>
<fA14 i1="01">
<s1>Environment Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University</s1>
<s2>Queensland 4222</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>88-94</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9623</s2>
<s5>354000194557330100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0094955</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of catalysis : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A bactericidal technique (PEC-Br) utilizing in situ photoelectrocatalytically generated photoholes (h
<sup>+</sup>
), long-lived di-bromide radical anions (Br========dot;
<sup>-</sup>
<sub>2</sub>
) and active oxygen species (AOS) for instant inactivation and rapid decomposition of Gram-negative bacteria such as Escherichia coli (E. coli) was proposed and experimentally validated. The method is capable of inactivating 99.90% and 100% of 9 x 10
<sup>6</sup>
CFU/mL E. coli within 0.40 s and 1.57 s, respectively. To achieve the same inactivation effect, the proposed method is 358 and 199 times faster than that of the photoelectrocatalytic method in the absence of Br
<sup>-</sup>
, and 2250 and 764 times faster than that of the photocatalytic method in the absence of Br
<sup>-</sup>
. The decomposition experimental results obtained from 600-s PEC-Br-treated samples demonstrated that over 90% of E. coli body mass was decomposed and 42% biological carbon contents in the sample was completely mineralized and converted into CO
<sub>2</sub>
. The mechanistic pathways of disinfection/decomposition by photocatalysis (PC), photoelectrocatalysis (PEC), and photoelectrocatalysis in presence of Br
<sup>-</sup>
(PEC-Br) were also illustrated based on experimental evidence.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01F01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01H07</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Décomposition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Decomposition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Descomposición</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Bromure</s0>
<s2>NA</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Bromides</s0>
<s2>NA</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Bromuro</s0>
<s2>NA</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Mécanisme</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mechanism</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Mecanismo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Radical libre anionique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Radical anion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Radical libre aniónico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Teneur carbone</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Carbon content</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Contenido carbono</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Escherichia coli</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Escherichia coli</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Escherichia coli</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Bactérie Gram négatif</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gram negative bacteria</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Bacteria Gram negativa</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Bactéricidie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Bactericidal effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Bactericidia</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Indium Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Titane Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Titanium Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Titanio Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Photoélectrocatalyse</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Enterobacteriaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Enterobacteriaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Enterobacteriaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Bactérie</s0>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Bacteria</s0>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Bacteria</s0>
</fC07>
<fN21>
<s1>059</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000819 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000819 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0094955
   |texte=   In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024